资源类型

期刊论文 659

年份

2024 2

2023 131

2022 98

2021 62

2020 39

2019 44

2018 31

2017 29

2016 26

2015 24

2014 17

2013 12

2012 26

2011 27

2010 20

2009 13

2008 14

2007 18

2006 3

2005 3

展开 ︾

关键词

碳中和 11

二氧化碳 6

低碳经济 6

低碳发展 4

低碳 3

天然气 3

CCS 2

三相界面 2

产业结构 2

光催化 2

化学吸收 2

化石能源 2

协同效应 2

固体氧化物燃料电池 2

土地利用变化 2

情景分析 2

碳基燃料 2

碳达峰 2

能源结构 2

展开 ︾

检索范围:

排序: 展示方式:

Fabricating sustainable lignin-derived porous carbon as electrode for high-performance supercapacitors

《化学科学与工程前沿(英文)》 2023年 第17卷 第8期   页码 1065-1074 doi: 10.1007/s11705-023-2313-0

摘要: Lignocellulosic biomass such as plants and agricultural waste are ideal to tackle the current energy crisis and energy-related environmental issues. Carbon-rich lignin is abundant in lignocellulosic biomass, whose high-value transformation and utilization has been the most urgent problem to be solved. Herein, we propose a method for the preparation of porous carbon from lignin employing an H3PO4-assisted hydrothermal method. We characterize the as-prepared lignin-derived porous carbon and investigate its potential for energy storage. After assisted hydrothermal treatment followed by carbonization at 800 °C, the lignin-derived porous carbon displays a high specific capacitance (223.6 F·g–1 at 0.1 A·g–1) and excellent cycling ability with good capacitance retention. In this present study, the resultant lignin-derived porous carbon was used as the electrode of a supercapacitor, illustrating yet another potential high-value use for lignin, namely as a candidate for the sustainable fabrication of main supercapacitor components.

关键词: lignin     porous carbon     electrode     supercapacitor    

Hierarchically porous zeolites synthesized with carbon materials as templates

《化学科学与工程前沿(英文)》 2021年 第15卷 第6期   页码 1444-1461 doi: 10.1007/s11705-021-2090-6

摘要: Hierarchically porous zeolites are promising candidates in catalytic conversion of relatively bulky molecules, and their syntheses have attracted significant attention. From both industrial and scientific perspectives, different carbon materials have been widely employed as hard templates for the preparation of hierarchically porous zeolites during the past two decades. In this review, the progress in synthetic strategies using carbon materials as templates is comprehensively summarized. Depending on the affinity between the carbon templates and zeolite precursors, the substantial strategies for synthesizing hierarchical zeolites are introduced in direct templates and indirect templates. Direct templates methods, by which the carbon materials are directly mixed with precursors gel as hard templates, are first reviewed. Then, we discuss the indirect templates method (crystallization of carbon-silica composites), by which the carbon is produced by in situ pyrolysis of organic-inorganic precursors. In addition, the technique of encapsulating metal species into zeolites crystals with the assistance of carbon templates is also discussed. In the conclusion part, the factors affecting the synthesis of carbon-templated hierarchically porous zeolites are remarked. This review is expected to attract interest in the synthesis strategies of hierarchically porous zeolites, especially cost-effective and large-scale production methodologies, which are essential to the industrial application of hierarchical zeolites.

关键词: hierarchical zeolites     carbon materials     direct templates     indirect templates     carbon-silica composites    

Boron and nitrogen co-doped porous carbon derived from sodium alginate enhanced capacitive deionization

《化学科学与工程前沿(英文)》 2023年 第17卷 第12期   页码 2014-2024 doi: 10.1007/s11705-023-2346-4

摘要: Capacitive deionization can alleviate water shortage and water environmental pollution, but performances are greatly determined by the electrochemical and desalination properties of its electrode materials. In this work, B and N co-doped porous carbon with micro-mesoporous structures is derived from sodium alginate by a carbonization, activation, and hydrothermal doping process, which exhibits large specific surface area (2587 m2·g‒1) and high specific capacitance (190.7 F·g‒1) for adsorption of salt ions and heavy metal ions. Furthermore, the materials provide a desalination capacity of 26.9 mg·g−1 at 1.2 V in 500 mg·L‒1 NaCl solution as well as a high removal capacity (239.6 mg·g‒1) and adsorption rate (7.99 mg·g‒1·min‒1) for Pb2+ with an excellent cycle stability. This work can pave the way to design low-cost porous carbon with high-performances for removal of salt ions and heavy metal ions.

关键词: capacitance deionization     porous carbon     B/N co-doping     heavy metal ions     water purification    

Synthesis of porous carbon from orange peel waste for effective volatile organic compounds adsorption

《化学科学与工程前沿(英文)》 2023年 第17卷 第7期   页码 942-953 doi: 10.1007/s11705-022-2264-x

摘要: Volatile organic compounds have posed a serious threat to the environment and human health, which require urgent and effective removal. In recent years, the preparation of porous carbon from biomass waste for volatile organic compounds adsorption has attracted increasing attention as a very cost-effective and promising technology. In this study, porous carbon was synthesized from orange peel by urea-assisted hydrothermal carbonization and KOH activation. The role of typical components (cellulose, hemicellulose, and lignin) in pore development and volatile organic compounds adsorption was investigated. Among the three components, hemicellulose was the major contributor to high porosity and abundant micropores in porous carbon. Higher hemicellulose content led to more abundant –COOR, amine-N, and pyrrolic/pyridonic-N in the derived hydrochar, which were favorable for porosity formation during activation. In this case, the toluene adsorption capacity of the porous carbon improved from 382.8 to 485.3 mg·g–1. Unlike hemicellulose, cellulose reduced the >C=O, amine-N, and pyrrolic/pyridonic-N content of the hydrochar, which caused porosity deterioration and worse toluene adsorption performance. Lignin bestowed the hydrochar with slightly increased –COOR, pyrrolic/pyridonic-N, and graphitic-N, and reduced >C=O, resulting in comparatively poor porosity and more abundant micropores. In general, the obtained porous carbon possessed abundant micropores and high specific surface area, with the highest up to 2882 m2·g–1. This study can provide guidance for selecting suitable biomass waste to synthesize porous carbon with better porosity for efficient volatile organic compounds adsorption.

关键词: biomass waste     porous carbon     feedstock composition     urea-assisted hydrothermal carbonization     toluene adsorption     N-doped hydrochar    

Sulfur-deficient CoNi2S4 nanoparticles-anchored porous carbon nanofibers as bifunctional

《化学科学与工程前沿(英文)》 2023年 第17卷 第11期   页码 1707-1717 doi: 10.1007/s11705-023-2308-x

摘要: Water electrolysis technology is considered to be one of the most promising means to produce hydrogen. Herein, aiming at the problems of high overpotential and slow kinetics in water splitting, N-doped porous carbon nanofibers-coupled CoNi2S4 nanoparticles are prepared as bifunctional electrocatalyst. In the strategy, NaCl is used as the template to prepare porous carbon nanofibers with a large surface area, and sulfur vacancies are created to modulate the electronic structure of CoNi2S4. Electron spin resonance confirms the formation of abundant sulfur vacancies, which largely reduce the bandgap of CoNi2S4 from 1.68 to 0.52 eV. The narrowed bandgap is conducive to the migration of valence electrons and decreases the charge transfer resistance for electrocatalytic reaction. Moreover, the uniform distribution of CoNi2S4 nanoparticles on carbon nanofibers can prevent the aggregation and facilitate the exposure of electrochemical active sites. Therefore, the composite catalyst exhibits low overpotentials of 340 mV@100 mA·cm–2 for oxygen evolution reaction and 380 mV@100 mA·cm–2 for hydrogen evolution reaction. The assembled electrolyzer requires 1.64 V to achieve 10 mA·cm–2 for overall water-splitting with good long-term stability. The excellent performance results from the synergistic effect of porous structures, sulfur deficiency, nitrogen doping, and the well-dispersed active component.

关键词: nanoparticle     sulfur vacancy     porous carbon nanofiber     transition metal sulfides     electrolysis    

Synthesis of micro/meso porous carbon for ultrahigh hydrogen adsorption using cross-linked polyaspartic

Jun Wei, Jianbo Zhao, Di Cai, Wenqiang Ren, Hui Cao, Tianwei Tan

《化学科学与工程前沿(英文)》 2020年 第14卷 第5期   页码 857-867 doi: 10.1007/s11705-019-1880-6

摘要: In addition to the specific surface area, surface topography and characteristics such as the pore size, pore size distribution, and micro/mesopores ratio are factors that determine the performance of porous carbons (PCs) in the fields of energy, catalysis, and adsorption. Based on the mechanism of weight loss of polyaspartic acid at high temperatures, this study provided a new method for adjusting the surface morphology of PCs by changing the cross-linking ratio of the precursor, where cross-linked polyaspartic acid was used as precursor without additional activating agents. N adsorption analysis indicated that the specific surface area of the obtained PCs was as high as 1458 m ·g , of which 1200 m ·g was the contribution of the microporous area and the highest pore volume was 1.13 cm ·g , of which the micropore volume was 0.636 cm ·g . The thermogravimetric analysis results of the precursor, and also the scanning electron microscopy and Brunauer–Emmet–Teller analysis results of the carbonization product confirmed that the prepared PCs presented multilevel pore structure, and the diameters of most pores were 0.78 and 3.97 nm; moreover, the pore size distribution was relatively uniform. This conferred the PCs the ultrahigh hydrogen adsorption capacity of up to 4.52 wt-% at 77 K and 1.13 bar, in addition to their great energy storage and catalytic potential.

关键词: porous carbon     multilevel pores     polyaspartic acid     cross-linking     hydrogen adsorption    

Concurrent adsorption and reduction of chromium(VI) to chromium(III) using nitrogen-doped porous carbon

《环境科学与工程前沿(英文)》 2022年 第16卷 第5期 doi: 10.1007/s11783-021-1491-6

摘要:

• A high-efficiency N-doped porous carbon adsorbent for Cr(VI) was synthesized.

关键词: Chromium(VI)     Nitrogen-doped porous carbon     Adsorption     Reduction     Loofah sponge    

Pd nano-catalyst supported on biowaste-derived porous nanofibrous carbon microspheres for efficient catalysis

《化学科学与工程前沿(英文)》 2023年 第17卷 第9期   页码 1289-1300 doi: 10.1007/s11705-023-2299-7

摘要: Environmental pollution caused by the presence of aromatic aldehydes and dyes in wastewater is a serious global concern. An effective strategy for the removal of these pollutants is their catalytic conversion, possibly to valuable compounds. Therefore, the design of efficient, stable and long-lifetime catalysts is a worthwhile research goal. Herein, we used nanofibrous carbon microspheres (NCM) derived from the carbohydrate chitin present in seafood waste, and characterized by interconnected nanofibrous networks and N/O-containing groups, as carriers for the manufacture of a highly dispersed, efficient and stable Pd nano-catalyst (mean diameter ca. 2.52 nm). Importantly, the carbonised chitin’s graphitized structure, defect presence and large surface area could promote the transport of electrons between NCM and Pd, thereby endowing NCM supported Pd catalyst with high catalytic activity. The NCM supported Pd catalyst was employed in the degradation of some representative dyes and the chemoselective hydrogenation of aromatic aldehydes; this species exhibited excellent catalytic activity and stability, as well as applicability to a broad range of aromatic aldehydes, suggesting its potential use in green industrial catalysis.

关键词: biowaste chitin     nanofibrous     palladium     nano-catalyst     catalysis    

“Charging” the cigarette butt: heteroatomic porous carbon nanosheets with edge-induced topological defects

《化学科学与工程前沿(英文)》 2023年 第17卷 第11期   页码 1755-1764 doi: 10.1007/s11705-023-2318-8

摘要: Owing to the complexity of electron transfer pathways, the sluggish oxygen evolution reaction process is defined as the bottleneck for the practical application of Zn–air batteries. In this effort, metal nanoparticles (Co, Ni, Fe, etc.) encapsulated within nitrogen-doped carbon materials with abundant edge sites were synthesized by one-step pyrolysis treatment using cigarette butts as raw materials, which can drastically accelerate the overall rate of oxygen evolution reaction by facilitating the adsorption of oxygenated intermediates by the edge-induced topological defects. The prepared catalyst of nitrogen-doped carbon porous nanosheets loaded with Co nanoparticles (Co@NC-500) exhibits enhanced catalytic activity toward oxygen evolution reaction, with a low overpotential of 350 mV at the current density of 10 mA·cm–2. Furthermore, the Zn–air battery assembled with Co@NC-500 catalyst demonstrates a desirable performance affording an open-circuit potential of 1.336 V and power density of 33.6 mW·cm–2, indicating considerable practical application potential.

关键词: oxygen evolution reaction     porous carbon nanosheets     Co nanoparticles     edge-induced topological defects     Zn–air batteries    

Carbon-doped surface unsaturated sulfur enriched CoS@rGO aerogel pseudocapacitive anode and biomass-derivedporous carbon cathode for advanced lithium-ion capacitors

《化学科学与工程前沿(英文)》 2021年 第15卷 第6期   页码 1500-1513 doi: 10.1007/s11705-021-2086-2

摘要: As a hybrid energy storage device of lithium-ion batteries and supercapacitors, lithium-ion capacitors have the potential to meet the demanding needs of energy storage equipment with both high power and energy density. In this work, to solve the obstacle to the application of lithium-ion capacitors, that is, the balancing problem of the electrodes kinetic and capacity, two electrodes are designed and adequately matched. For the anode, we introduced in situ carbon-doped and surface-enriched unsaturated sulfur into the graphene conductive network to prepare transition metal sulfides, which enhances the performance with a faster lithium-ion diffusion and dominant pseudocapacitive energy storage. Therefore, the lithium-ion capacitors anode material delivers a remarkable capacity of 810 mAh∙g–1 after 500 cycles at 1 A∙g–1. On the other hand, the biomass-derived porous carbon as the cathode also displays a superior capacity of 114.2 mAh∙g–1 at 0.1 A∙g–1. Benefitting from the appropriate balance of kinetic and capacity between two electrodes, the lithium-ion capacitors exhibits superior electrochemical performance. The assembled lithium-ion capacitors demonstrate a high energy density of 132.9 Wh∙kg–1 at the power density of 265 W∙kg–1, and 50.0 Wh∙kg–1 even at 26.5 kW∙kg–1. After 10000 cycles at 1 A∙g–1, lithium-ion capacitors still demonstrate the high energy density retention of 81.5%.

关键词: in-situ carbon-doped     surface unsaturated sulfur enriched     pseudocapacitive energy storage     biomass-derived carbon     lithium-ion capacitors    

Electrospun porous carbon nanofibers derived from bio-based phenolic resins as free-standing electrodes

《化学科学与工程前沿(英文)》 2023年 第17卷 第5期   页码 504-515 doi: 10.1007/s11705-022-2260-1

摘要: Phenolic resins were employed to prepare electrospun porous carbon nanofibers with a high specific surface area as free-standing electrodes for high-performance supercapacitors. However, the sustainable development of conventional phenolic resin has been challenged by petroleum-based phenol and formaldehyde. Lignin with abundant phenolic hydroxyl groups is the main non-petroleum resource that can provide renewable aromatic compounds. Hence, lignin, phenol, and furfural were used to synthesize bio-based phenolic resins, and the activated carbon nanofibers were obtained by electrospinning and one-step carbonization activation. Fourier transform infrared and differential scanning calorimetry were used to characterize the structural and thermal properties. The results reveal that the apparent activation energy of the curing reaction is 89.21 kJ·mol–1 and the reaction order is 0.78. The activated carbon nanofibers show a uniform diameter, specific surface area up to 1100 m2·g–1, and total pore volume of 0.62 cm3·g–1. The electrode demonstrates a specific capacitance of 238 F·g–1 (0.1 A·g–1) and good rate capability. The symmetric supercapacitor yields a high energy density of 26.39 W·h·kg–1 at 100 W·kg–1 and an excellent capacitance retention of 98% after 10000 cycles. These results confirm that the activated carbon nanofiber from bio-based phenolic resins can be applied as electrode material for high-performance supercapacitors.

关键词: lignin     bio-based phenolic resins     electrospinning     activated carbon nanofibers     supercapacitors    

Electrodeposited porous Pb electrode with improved electrocatalytic performance for the electroreduction

Jing WANG, Hua WANG, Zhenzhen HAN, Jinyu HAN

《化学科学与工程前沿(英文)》 2015年 第9卷 第1期   页码 57-63 doi: 10.1007/s11705-014-1444-8

摘要: A porous Pb foam was fabricated electrochemically at a copper substrate and then used as the cathode for the electroreduction of CO . The surface morphology and composition of the porous Pb electrode was characterized by scanning electron microscopy, X-ray diffraction, transmission electron microscopy and selected area electron diffraction. The honeycomb-like porous structure was composed of needle-like Pb deposits. Cyclic voltammetry studies demonstrated that the porous Pb electrode had better electrocatalytic performance for the formation of formic acid from CO compared with a Pb plate electrode. The increase in current density was due to the large surface area of the porous Pb electrode, which provides more active sites on the electrode surface. The improved formic acid selectivity was due to the morphology of the roughened surface, which contains significantly more low-coordination sites which are more active for CO reduction. The highest current efficiency for formic acid was 96.8% at -1.7 V versus saturated calomel electrode at 5 °C. This porous Pb electrode with good catalytic abilities represents a new 3D porous material with applications for the electroreduction of CO .

关键词: electrodeposited porous Pb     carbon dioxide     electroreduction     formic acid    

Hierarchical porous carbon derived from one-step self-activation of zinc gluconate for symmetric supercapacitors

《化学科学与工程前沿(英文)》 2023年 第17卷 第4期   页码 387-394 doi: 10.1007/s11705-022-2250-3

摘要: Porous carbons with high specific area surfaces are promising electrode materials for supercapacitors. However, their production usually involves complex, time-consuming, and corrosive processes. Hence, a straightforward and effective strategy is presented for producing highly porous carbons via a self-activation procedure utilizing zinc gluconate as the precursor. The volatile nature of zinc at high temperatures gives the carbons a large specific surface area and an abundance of mesopores, which avoids the use of additional activators and templates. Consequently, the obtained porous carbon electrode delivers a satisfactory specific capacitance and outstanding cycling durability of 90.9% after 50000 cycles at 10 A∙g–1. The symmetric supercapacitors assembled by the optimal electrodes exhibit an acceptable rate capability and a distinguished cycling stability in both aqueous and ionic liquid electrolytes. Accordingly, capacitance retention rates of 77.8% and 85.7% are achieved after 50000 cycles in aqueous alkaline electrolyte and 10000 cycles in ionic liquid electrolyte. Moreover, the symmetric supercapacitors deliver high energy/power densities of 49.8 W∙h∙kg–1/2477.8 W∙kg–1 in the Et4NBF4 electrolyte, outperforming the majority of previously reported porous carbon-based symmetric supercapacitors in ionic liquid electrolytes.

关键词: self-activation     zinc organic salts     abundant mesopores     symmetric supercapacitor     liquid electrolyte    

FeNi doped porous carbon as an efficient catalyst for oxygen evolution reaction

Jun-Wei Zhang, Hang Zhang, Tie-Zhen Ren, Zhong-Yong Yuan, Teresa J. Bandosz

《化学科学与工程前沿(英文)》 2021年 第15卷 第2期   页码 279-287 doi: 10.1007/s11705-020-1965-2

摘要: Polymer-derived porous carbon was used as a support of iron and nickel species with an objective to obtain an efficient oxygen reduction reaction (OER) catalyst. The surface features were extensively characterized using X-ray diffraction, X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy. On FeNi-modified carbon the overpotential for OER was very low (280 mV) and comparable to that on noble metal catalyst IrO . The electrochemical properties have been investigated to reveal the difference between the binary alloy- and single metal-doped carbons. This work demonstrates a significant step for the development of low-cost, environmentally-friendly and highly-efficient OER catalysts.

关键词: OER     polystyrene salt     porous carbon     FeNi alloy     p/n junction    

Floret-like Fe–N nanoparticle-embedded porous carbon superstructures from a Fe-covalent triazine polymer

《化学科学与工程前沿(英文)》 2023年 第17卷 第5期   页码 525-535 doi: 10.1007/s11705-022-2232-5

摘要: Fe–Nx nanoparticles-embedded porous carbons with a desirable superstructure have attracted immense attention as promising catalysts for electrochemical oxygen reduction reaction. Herein, we employed Fe-coordinated covalent triazine polymer for the fabrication of Fe–Nx nanoparticle-embedded porous carbon nanoflorets (Fe/N@CNFs) employing a hypersaline-confinement-conversion strategy. Presence of tailored N types within the covalent triazine polymer interwork in high proportions contributes to the generation of Fe/N coordination and subsequent Fe–Nx nanoparticles. Owing to the utilization of NaCl crystals, the resultant Fe/N@CNF-800 which was generated by pyrolysis at 800 °C showed nanoflower structure and large specific surface area, which remarkably suppressed the agglomeration of high catalytic active sites. As expect, the Fe/N@CNF-800 exhibited unexpected oxygen reduction reaction catalytic performance with an ultrahigh half-wave potential (0.89 V vs. reversible hydrogen electrode), a dominant 4e transfer approach and great cycle stability (> 92% after 100000 s). As a demonstration, the Fe/N-PCNF-800-assembled zinc–air battery delivered a high open circuit voltage of 1.51 V, a maximum peak power density of 164 mW·cm–2, as well as eminent rate performance, surpassing those of commercial Pt/C. This contribution offers a valuable avenue to exploit efficient metal nanoparticles-based carbon catalysts towards energy-related electrocatalytic reactions and beyond.

关键词: Fe–Nx nanoparticles     hypersaline-confinement conversion     floret-like carbon     covalent triazine polymers     oxygen reduction reaction    

标题 作者 时间 类型 操作

Fabricating sustainable lignin-derived porous carbon as electrode for high-performance supercapacitors

期刊论文

Hierarchically porous zeolites synthesized with carbon materials as templates

期刊论文

Boron and nitrogen co-doped porous carbon derived from sodium alginate enhanced capacitive deionization

期刊论文

Synthesis of porous carbon from orange peel waste for effective volatile organic compounds adsorption

期刊论文

Sulfur-deficient CoNi2S4 nanoparticles-anchored porous carbon nanofibers as bifunctional

期刊论文

Synthesis of micro/meso porous carbon for ultrahigh hydrogen adsorption using cross-linked polyaspartic

Jun Wei, Jianbo Zhao, Di Cai, Wenqiang Ren, Hui Cao, Tianwei Tan

期刊论文

Concurrent adsorption and reduction of chromium(VI) to chromium(III) using nitrogen-doped porous carbon

期刊论文

Pd nano-catalyst supported on biowaste-derived porous nanofibrous carbon microspheres for efficient catalysis

期刊论文

“Charging” the cigarette butt: heteroatomic porous carbon nanosheets with edge-induced topological defects

期刊论文

Carbon-doped surface unsaturated sulfur enriched CoS@rGO aerogel pseudocapacitive anode and biomass-derivedporous carbon cathode for advanced lithium-ion capacitors

期刊论文

Electrospun porous carbon nanofibers derived from bio-based phenolic resins as free-standing electrodes

期刊论文

Electrodeposited porous Pb electrode with improved electrocatalytic performance for the electroreduction

Jing WANG, Hua WANG, Zhenzhen HAN, Jinyu HAN

期刊论文

Hierarchical porous carbon derived from one-step self-activation of zinc gluconate for symmetric supercapacitors

期刊论文

FeNi doped porous carbon as an efficient catalyst for oxygen evolution reaction

Jun-Wei Zhang, Hang Zhang, Tie-Zhen Ren, Zhong-Yong Yuan, Teresa J. Bandosz

期刊论文

Floret-like Fe–N nanoparticle-embedded porous carbon superstructures from a Fe-covalent triazine polymer

期刊论文